Short Reports 327

EXPERIMENTAL

Isolation of sucrose octa-acetate. Dried chips of Radix Clematidis (1.0 kg) were percolated with 31. 95% EtOH. The EtOH extract, after evaporation to dryness was exhaustively extracted in a Soxhlet with Et₂O. The residue from the ether crystallized from petrol. After 2 further recrystallization from ether, it was obtained as colorless needles, mp 84–86°, with $[\alpha]_D + 62^\circ$ (c 1.0 in CHCl₃). The m.p. was unchanged by admixture of an authentic sample of sucrose octa-acetate. TLC (Si gel G); R_f 0-83 (CH₂Cl₂:C₆H₆ = 1:1). Elem. Anal. Found: C. 49-41; H. 5-82. Calc. for $C_{28}H_{38}O_{19}$: C. 49-56; H. 5-69°, V_{08}^{Bir} 1740. 1250 (broad): 3480 cm⁻¹ (overtone) [-OCOM₂]. $\delta_{118}^{\text{CDC}}$ 2-00 (3H), 2-04 (3H), 2-01 (15H), 2-18 (3H) [-OCOCH₃], 4-10-4-40 (6H), 4-72-5-76 (5H) [-CH-OCOMe]. Mass, m/e; 331, 229, 271, 211, 169, 109.

Identification of sucrose octa-acetate. Dried roots of (C. chinensis or C. apiifolia) were exhaustively extracted by Soxhlet with Et₂O. The ethereal solution was evaporated to dryness. The residue was chromatographed on a thin or thick-layer

Si gel G plate in $CH_2Cl_2-C_6H_6$ (1:1). The component isolated from the thick-layer plate (R_f 0.75–0.85) was a crystalline solid, which was assigned as sucrose octa-acetate on the basis of the R_f value, mp, IR and NMR spectra.

Acknowledgements—We thank Prof. M. Tamura, Osaka University, for identifying the plant of C. chinensis and Prof. S. Kawano, Toyama University, for a sample of C. apiifolia.

REFERENCES

- (a) Binkley, W. W., Dougherty, R. C., Horton, D., Wander, J. D. (1971) Carbohyd. Res. 17, 127. (b) Lemieux, R. U. and Nagarajan, R. (1964) Can. J. Chem. 42, 1270.
- (a) Bincley, W. W., Horton, D., Bhacca, N. S. (1969) Carbohyd. Res. 10, 245.
 (b) Budzikiewicz, H., Djerassi, C., Williams, D. H. (1964) Structure Elucidation of Natural Products by Mass Spectrometry, Vol. II, pp. 203-238, Holden-Day, San Francisco.
- 3. Stanek, J. and Cerna, J. (1963) Monatsh 94, 329.

Phytochemistry, 1976, Vol. 15, p. 327. Pergamon Press. Printed in England.

THE IDENTIFICATION OF LENZITIN AS OOSPONOL*

SHOICHI NAKAJIMA, KEN-ICHI KAWAI and SHIZUE YAMADA Hoshi College of Pharmacy, Ebara 2-4-41, Shinagawa-ku, Tokyo

(Received 19 June 1975)

Key Word Index—Gloeophyllum sepiarium; Oospora astringenes; fungi; lenzitin; oosponol; antibiotic; antifungal activity.

Lenzitin, an antibiotic which from a basidiomycete Gloeophyllum sepiarium (Wulf. ex Fr.) Karst [1] but has never been examined shemically to date. We now present evidence which shows that it is identical with oosponol (4- ω -hydroxyacetyl-8-hydroxy isocoumarin), a metabolite from Oospora astringenes Yamamoto [2-5].

The above spectroscopic and chemical data suggested that lenzitin was oosponol. This was confirmed by direct comparison of IR and NMR spectra of the two compounds and a mp determination.

Biological significance. The antibiotic activity of lenzitin or oosponol against Gram-positive and Gram-negative bacteria is reportedly not very strong [1,2]. Now we found that it possesses strong antifungal activity. It inhibited the growth of Candida albicans, Aspergillus fumigatus and Trichophyton asteroides at the concentration respectively of 1.56, 1.56 and $3.12~\mu g/ml$, as measured by liquid dilution method.

EXPERIMENTAL

The IR spectrum was measured in KBr discs, and the UV spectrum in EtOH.

Acknowledgement—We wish to thank Professor Y. Yamamoto for his kind donation of the sample of oosponol.

REFERENCES

- 1. Litvinov, M. A. and Moiseeva, E. N. (1951) Priroda 60. 2. Yamamoto, I. and Yamamoto, Y. (1960) Agr. Biol. Chem.
- 3. Yamamoto, I. (1961) Agr. Biol. Chem. 25, 400.
- Yamamoto, I., Nitta, K. and Yamamoto, Y. (1962) Agr. Biol. Chem. 26, 486.
- Nitta, K., Imai, J., Yamamoto, I. and Yamamoto, Y. (1963) Agr. Biol. Chem. 27, 817.

^{*} Part 3 in the series Studies on Fungal Products. For Part 2 see Kanazawa, T. and Nakajima, S. (1973) Proc. Hoshi Pharm. 15, 44.